

iOS APPLICATION

PENETRATION TESTING

Report for:

Date:

This document contains confidential information about IT systems and network

infrastructure of the customer, as well as information about potential vulnerabilities and

methods of their exploitation. This confidential information is for internal use by the

customer only and shall not be disclosed to third parties.

HackControl

info@
hackcontrol.org

HackControl

info@
hackcontrol.org

Table of Contents

Table of Contents 2

Introduction 3

Executive Summary 3

Team 4

Scope of Security Assessment 5

Methodology 6

Severity Definition 7

Summary of Findings 8

Key Findings 9

 User’s credential stores locally and not encrypted in application’s sandbox 9

 Requests and responses stores insecure in cache.db 10

 Insecure sending of the user’s mobile phone (areacode+regname) 10

 Weak cryptography 12

 Input fields with sensitive data should be cleared after hiding/opening the application

 13

 Clipboard should be disabled for fields with sensitive data 14

 Application doesn’t have jailbreak detection mechanism 15

Appendix A. Automated Tools 16

HackControl

info@
hackcontrol.org

Introduction

We thank _____________ for giving us the opportunity to conduct Security Assessment of

their mobile application and its backend API. This document outlines our methodology,

limitations and results of the security assessment.

Executive Summary

Hackcontrol (Consultant) was contracted by _________ (Customer) to conduct the penetration

testing of their mobile application.

This report presents the findings of the penetration testing of CLIENT`s mobile application

conducted between February 04th, 2018 – February 22nd, 2018.

The main subject of the penetration testing is ___________`s mobile systems & API.

Application Security Assessment has the following objectives:

- identify technical and functional vulnerabilities;

- estimate their severity level (ease of use, impact on information systems, etc);

- modelling the “most likely” attack vector against the Customer’s Information System;

- proof of concept and exploitation of vulnerabilities;

- draw up a prioritized list of recommendations to address identified weaknesses.

According to our research, the mobile application is of high security rating for Customer and

Backend systems; Several high-level vulnerabilities have been detected, however it requires a

considerable amount of time and efforts to exploit them.

Three (3) High vulnerabilities of sensitive info logging and bypass root and developer mode

checks were diagnosed during the security assessment. Also, three (3) Medium and a number

of Low and Informative vulnerabilities and errors were identified.

HackControl

info@
hackcontrol.org

Team

Role Name EMAIL

Project Manager
John Doe

(CEH, ISO27001 LA)
info@hackcontrol.org

Penetration Testing

Engineer

John Doe

(OSCP, eWPT, eCPPT)
engineer@hackcontrol.org

HackControl

info@
hackcontrol.org

Scope of Security Assessment

The following list of systems was in the scope of the Security Assessment.

Name Description

1 __ iOS

Security Assessment start and end dates were coordinated by email according to the following

table.

HackControl

info@
hackcontrol.org

Methodology

The testing methodology is based on generally accepted industry-wide approaches to perform

penetration testing for mobile applications – Mobile Security Testing Guide (MSTG);

Application-level penetration tests include, at a minimum, checking for the following types of

vulnerabilities:

- lack of binary protections;

- insecure data storage;

- unintended data leakage;

- client-side injection;

- weak encryption;

- implicit trust of all certificates;

- execution of activities using root;

- private key exposure;

- exposure of database parameters and SQL queries;

- insecure random number generator;

HackControl

info@
hackcontrol.org

Severity Definition

The level of criticality of each risk is determined based on the potential impact of loss from

successful exploitation as well as ease of exploitation, existence of exploits in public access

and other factors.

Severity Description

High

High-level vulnerabilities are easy in exploitation and may provide an

attacker with full control of the affected systems, also may lead to

significant data loss or downtime. There are exploits or PoC available

in public access.

Medium

Medium-level vulnerabilities are much harder to exploit and may not

provide the same access to affected systems. No exploits or PoCs

available in public access. Exploitation provides only very limited

access.

Low

Low-level vulnerabilities provide an attacker with information that

may assist them in conducting subsequent attacks against target

information systems or against other information systems, which

belong to an organization. Exploitation is extremely difficult, or

impact is minimal.

Info These vulnerabilities are informational and can be ignored.

HackControl

info@
hackcontrol.org

Summary of Findings

According to the following in-depth testing of the environment, CLIENT iOS application

requires some improvements.

Value Numbers of risks

High 2

Medium 2

Low 2

Info 1

Based on our understanding of the iOS application, as well as the nature of the vulnerabilities

discovered, their exploitability, and the potential impact we have assessed the level of risk for

your organization to be Low.

No major design flaws were identified. No data manipulation or corruption were discovered,

however some vulnerabilities against application availability and users’ security are the point

of concern. The vulnerabilities identified were the following: “User’s credential stores locally

and not encrypted in application’s sandbox”, “Requests and responses stores insecure in

Cache.db”, “Weak cryptography” and others.

6
5

7 4 8 3 2 1
0

9
10

Highly Insecure Highly Secure

High Security Rating

HackControl

info@
hackcontrol.org

Key Findings

 User’s credential stores locally and not encrypted in application’s

sandbox

#1 Description Type: Real

Local database from

/var/mobile/Containers/Data/Application/DC6488D9-C54A-

4FE8-87DB-49764E92938C/Library/Caches/com.CLIENT.ff stores user’s credential

Evidences

Steps to reproduce:

- Sign up/Log in to the application

- Connect to the device with ssh

- Navigate to application's sandbox

- Open Cache.db with any SQLite viewer, from /Library/Caches/com.company.exchange/

Recommendations Application shouldn`t stores locally

user`s credentials

HackControl

info@
hackcontrol.org

 Requests and responses stores insecure in cache.db

#2 Description Type: Real

Local database from /var/mobile/Containers/Data/Application/DC6488D9-C54A-

4FE8-87DB-49764E92938C/Library/Caches/com.company.exchange stores

all requests and responses with data.

This information can be used by attacker for getting access to users account.

Evidences

Steps to reproduce:

- Sign up/Log in to the application

- Connect to the device with ssh

- Navigate to application's sandbox

- Open Cache.db with any SQLite viewer, from /Library/Caches/com.company.exchange/

For example, areaCode and regName parameters with data, in sum this is user's mobile phone

number:

Recommendations Application shouldn’t store requests and responses locally or this

database should be encrypted. For example, you can use SQLite 3

library for that.

This is C++ wrapper that provides an API for the SQLite commands.

 Insecure sending of the user’s mobile phone (areacode+regname)

#3 Description Type: Real

HackControl

info@
hackcontrol.org

Application sends user’s mobile phone number from “Sign up” screen with GET method. RESTful

web services should be secured to prevent leaking credentials. Logins, passwords, security tokens,

and API keys should not appear in the URL. In POST/PUT requests sensitive data should be

transferred in the request body or request headers. In GET requests sensitive data should be

transferred in an HTTP Headers.

Evidences

Steps to reproduce:

- Run BurpSuite

- Set up proxy connection on the device

- Install root SSL CA on the device

- Disable certificate validation with SSL KILL SWITCH 2

- Intercept requests from the “Sign up” screen

Recommendations Remove this requests at all or if it's important for logics - switch them

on the POST method for sending sensitive information.

HackControl

info@
hackcontrol.org

 Weak cryptography

#4 Description Type: Real

In order to exploit this weakness, an adversary must successfully return encrypted code or sensitive

data to its original unencrypted form due to weak encryption algorithms or flaws within the

encryption process.

Evidences

Recommendations Use modern hashing algorithms for example SHA515

HackControl

info@
hackcontrol.org

 Input fields with sensitive data should be cleared after hiding/opening

the application

#5 Description Type: Real

This is supposed for the password and invite code fields and it will be useful in case when a user

sets data in this fields and hides the application without verify/login step.

Evidences

Steps to reproduce:

- Open the application on the “Sign up”, “Log in” or “Change password” screens

- Set password

- Hide/Open the application

Recommendations The app removes sensitive data from the input fields when

backgrounded.

HackControl

info@
hackcontrol.org

 Clipboard should be disabled for fields with sensitive data

#5 Description Type: Real

Clipboard is one for all system and sensitive data of our application can be stolen by another one.

Evidences

Steps to reproduce:

- Open the application on the “Sign up”, “Log in” or “Change password” screens

- Select all the text in the password field

- Try to copy the text

Recommendations Clipboard should be disabled for all the input fields working with

sensitive data.

HackControl

info@
hackcontrol.org

 Application doesn’t have jailbreak detection mechanism

#7 Description Type: Real

Should be implemented functionally independent methods of jailbreak detection and responds to

the presence of a jailbroken device by terminating the application or should display Warning pop-

up ("Your device appears to be jailbroken. The security of your app can be compromised.") every

start.

Second jailbreak detection mechanism is Checking file permissions. This mechanism should try

to write into location outside of the application's sandbox. This mechanism should try to write into

location outside of the application's sandbox. For example, this can be done by having the

application attempt to create a file in /private directory.

NSError *error;
NSString *stringToBeWritten = @"This is a test.";
[stringToBeWritten
writeToFile:@"/private/jailbreak.txt" atomically:YES
encoding:NSUTF8StringEncoding error:&error];
if(error==nil){
//Device is jailbroken
return YES;
} else {
//Device is not jailbroken
[[NSFileManager defaultManager]
removeItemAtPath:@"/private/jailbreak.txt" error:nil];
}
Third jailbreak detection mechanism is Checking protocol handlers. For example, application can

attempt to open a Cydia URL. The Cydia app store, which is installed by default by practically

every jailbreaking tool, installs the cydia:// protocol handler.

if([[UIApplication sharedApplication] canOpenURL:[NSURL
URLWithString:@"cydia://package/com.example.package"]])
{
Fourth jailbreak detection mechanism is Calling system APIs. This mechanism should try to

calling the system() function with a NULL argument on a non jailbroken device will return ”0”;

doing the same on a jailbroken device will return ”1”. This is since the function will check whether

/bin/sh can be accessed, and this is only the case on jailbroken devices.

Recommendations First jailbreak detection mechanism is File-based checks.

HackControl

info@
hackcontrol.org

Appendix A. Automated Tools

Scope Tools used

Application Security Burp Suite

ettercap

SSL Kill Switch 2

Filza

keychain-dumper

ipainstaller

Needle

Log Console

Atom

DB Browser for SQLite

TestSSL

Nmap

Tested on iPad iOS 11.2.1

with Electra jailbreak

HackControl

info@
hackcontrol.org

